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ABSTRACT
In this paper, we describe and model a new five-degree-of-

freedom parallel manipulator. This structure has been specially
designed for medical applications that require in the same time
mobility, compactness and accuracy around a functional point.
The purpose of this robotic device is to help practitioners in per-
forming accurate needle insertion while preserving them from
harmful intra-operative X-rays imaging devices. The system is
built from revolute joints, among which only five joints are actu-
ated to convey the required five degrees of freedom to its moving
platform. A numerical simulation of the workspace and a real
prototype are presented.

INTRODUCTION
Because surgery is changing very fast, new medical devices

are always needed to solve difficult tasks. In medical cares, per-
cutaneous procedures are among the upcoming treatments that
can help the patient to have faster recovery and less painful inter-
ventions. Such interventions are commonly used for therapy or
diagnosis by radiologists [1]. They consist in inserting a needle
in the body of a patient through an entry point on the skin. Be-
cause of positioning accuracy requirements, these interventions
are often done with intra-operative X-rays imaging devices such
as Computed Tomography scans (CT-scan). Thus the practitioner
may be exposed to large amounts of X-rays which are harmful for
his health. Robotic assistants are a very promising solution for

this kind of interventions since they could allow the protection
of the practitioner while guarantying satisfactory accuracy. Such
robotic systems working in the CT-scan ring already exist [2–4]
and clinical trials have already been achieved. But these systems
are not well suitable for every kind of percutaneous procedures,
in particular for abdominal interventions for which the breath-
ing of the patient has a great influence. In order to design a new
robotic system, we list the very strong medical requirements for
this kind of procedures. We present some of the most important
constraints here (the reader will find further details in the litera-
ture [5, 6]). Additionally, the nature of the working environment
(X-rays) will give different kind of constraints on the mechanism
of the robotic system.

Required Mobility of the Mechanism. To mimic the
radiologist gesture, we theoretically need six degrees of freedom
to hold and insert the needle. But, from a practical point of view,
we dissociate the positioning and orientation of the needle from
the insertion itself. Indeed, it allows more safety during the inser-
tion as the positioning and orientation will be accomplished by
the robotic device described in this paper. The required mobility
thus corresponds to three degrees for positioning the entry point
and two additional degrees for orienting the line supporting the
needle axis (no self rotation). The insertion task will be achieved
by a tool mounted as an end-effector on the robotic device. The
description of this specific tool is out-of-scope of this document.
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Dimensions of the CT-scan Gantry. A CT-scan
imaging device looks like a bulky horizontal-axis ring of 700
mm in diameter. The patient is placed on a translating table that
moves through the ring, leaving only a small space available for
special instruments. This is mainly due to the fact that CT-scans
are not designed for medical interventions. The typical free space
for the radiologist is thus a 200 mm radius half-sphere centered
on the entry point.

CT Image Plane. Computed tomography works by ac-
quiring numerous X-rays projections of its inner space, which is
often called a CT-plane. This plane has a few millimeters width
(10 to 30 mm) and vertically slices the patient body. As X-rays
are very disrupted by metal and electrical devices, these materi-
als must be avoided in the CT-plane. Since the mechanism has to
hold the needle while the imaging device is acquiring a slice of
the patient body, we must design our robot so that no metal parts
cross the CT-plane.

Patient Safety, Exerted Forces and Accuracy.
Safety and sterilization are critical requirements. Briefly, we can
say that our system has to be attached to the patient body to avoid
the breathing issue. It means that the robot is placed inside the
CT ring and that it must be small enough to fit in the 200 mm
half sphere. Furthermore, the robot must remain motionless in
case of a failure in order to avoid an undesirable motion or twist
of the needle. In [7] and our own experiments [8], we found that
a maximum force of 20 N has to be applied on the needle dur-
ing an insertion. This is a challenging constraint: in the same
time the practitioner wants to have a precision of at least 1 mm.
So, the accuracy and the rigidity of the system are other critical
requirements.

Choice of the Structure. The design constraints we
presented above limit the choice among the existing known
mechanisms. We chose a parallel structure since these mecha-
nisms are very well suited for absolute positioning accuracy and
rigidity. Their workspaces are rather small when high mobility
is required. As the combination of serial mechanism and parallel
structure may help to find a good compromise, this is the choice
we finally made.

The paper is organized as follows. In the first section the
robot is described using a local product of exponential represen-
tation and the closed-chain model is given. In the second sec-
tion we calculate the forward and inverse kinematic models. Fi-
nally, in the last section we give simulation results (notably the
workspace representation) and present the prototype built from
our study.
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Figure 1. SIMPLIFIED REPRESENTATION

DESCRIPTION OF THE MECHANISM
Our design is inspired by the work of Hunt [9] on the geom-

etry of mechanisms. Tsai [10] proposes a methodology for creat-
ing and classifying mechanisms. According to this classification,
the system we designed is made of one 6-bar linkage associated
to a 4-bar linkage joined together by a common platform.

Structure Description
The structure has three legs, i.e. three serial chains joining

the base to the platform. A frame F0 = (O0,x0,y0,z0) is asso-
ciated to the base of the robot and a frame F f = (O f ,xf,yf,zf)
is associated to the platform (see Fig. 1). The first two opposite
legs of the robot are symmetrical chains and form the planar 6-
bar linkage. This linkage aims at constraining three degrees of
freedom in its plane (Fig.1(a)). The three controlled parameters
associated to this 6-bar linkage are the variable lengths l1, l2 and
the angle α.

Once these two legs are positioned, two degrees of freedom
have to be defined: the first one is a rotation of the planar 6-bar
linkage about the line (∆1) passing through the base (Fig. 1(a)).
The second corresponds to a platform rotation about the line (∆2).

Geometrically, the mechanism constraints any fixed point of
the platform to move on a circle contained in a plane normal to
the line (∆1). In addition, the platform orientation is possible
through a rotation about the same line (∆1). Finally, the last leg
must constraint these two degrees of freedom with the variable
length l3 and angle β (Fig. 1(b)).

Our real model includes a more complex structure for each
leg to have all the benefits of a parallel structure together with
the workspace of a serial robot. We used only revolute joints in
the design (see Fig. 2).
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Figure 2. FUNCTIONAL SCHEMATIC OF THE ROBOT

Legs Modeling
Let us first introduce the mathematical notations we use for

the modeling.
For any i, j ∈ N, let Ci be cos(θi), Si be sin(θi), Ci, j be

cos(θi + θ j), Si, j be sin(θi + θ j), etc. Let a rigid frame i be de-
noted as Fi, and its origin by Oi. Vectors are typed in bold face.
The coordinates of a vector AB, expressed in Fi are denoted as
iAB. Its components are iAB [x], iAB [y], iAB [z]. The associated
homogeneous coordinates are iAB.

Local Product Of Exponentials Formalism. The
modified Denavit-Hartenberg (DH) parameterization [11] is un-
doubtly the most common way to describe serial robots in order
to model them. An interesting alternative to the DH description
is given by the product of exponential (POE) [12, 13]. This for-
malism has a comprehensive geometric interpretation and is easy
to use both in the case of serial and parallel robots. To model a
serial chain of a robot, we use the local product of exponentials
(LPOE), as described in [14]. We briefly recall here the principle
of this modeling.

We consider a serial mechanism for which the i−th joint
connects two adjacent links. The frames Fi−1 and Fi are associ-
ated to these successive links. The rigid transformation describ-
ing the pose of Fi relative to Fi−1 is given by the homogeneous
matrix of SE(3):

i−1T i(θi) =

[
i−1R i

i−1Oi−1Oi
0 1

]
(1)

where i−1Ri and i−1Oi−1Oi respectively represent the rotation
and the translation from Fi−1 to Fi. The expression of the trans-
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Figure 3. KINEMATIC MODEL OF THE ROBOT

Table 1. INITIAL CONFIGURATION OF THE FIRST LEG.

Axis 0zi Joint i center position : 0Oi−1Oi Joint i position : θi

0z1 =
[
0 −1 0

]T
0O0O1 =

[
0 −LBT LBH

]T
p1

0z2 =
[
1 0 0

]T
0O1O2 =

[
0 0 a1

]T
p2

0z3 =
[
1 0 0

]T
0O2O3 =

[
0 0 a2

]T
q3

0z4 =
[
1 0 0

]T
0O3O4 =

[
0 0 a3

]T
q4

0z5 =
[
0 −1 0

]T
0O4O5 =

[
0 0 LPH

]T
p5

0z f =
[
0 0 1

]T
0O5O f =

[
0 LPT 0

]T

formation using the LPOE is :

i−1Ti(θi) = i−1Ti(0) eξ̂iθi (2)

where i−1Ti(0) gives the pose resulting from the fully extended
initial configuration of frame Fi expressed in Fi−1 and ξ̂i is the
matrix associated to a transformation by a twist ξi [12, 14]. To
simplify the modeling we consider that the initial rotation matrix
is identity : i−1Ri = I. The position θi of the i−th joint is denoted
as qi for the actuated joints and as pi for the passive joints. The
i− th joint zi axis is oriented as defined on Fig. 3.

As we consider the legs independently, we write their fully
extended initial configuration joining frame F0 to F f . First, we
define the initial configuration of the first leg by Tab. 1. The
composition of the elementary transformations gives the forward
kinematics of the first chain denoted as gst1.
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Table 2. INITIAL CONFIGURATION OF THE SECOND LEG.

Axis 0zi Joint i center position : 0Oi−1Oi Joint i position : θi

0z6 =
[
0 −1 0

]T
0O0O6 =

[
0 LBT LBH

]T
p6

0z7 =
[
1 0 0

]T
0O6O7 =

[
0 0 a1

]T
p7

0z8 =
[
1 0 0

]T
0O7O8 =

[
0 0 a2

]T
q8

0z9 =
[
1 0 0

]T
0O8O9 =

[
0 0 a3

]T
p9

0z10 =
[
0 −1 0

]T
0O9O10 =

[
0 0 LPH

]T
p10

0z f =
[
0 0 1

]T
0O10OF =

[
0 −LPT 0

]T

Table 3. INITIAL CONFIGURATION OF THE THIRD LEG.

Axis 0zi Joint i center position : 0Oi−1Oi Joint i position : θi

0z11 =
[
0 0 1

]T
0O0O11 =

[
−LBX LBY LBZ

]T
p11

0z12 =
[
0 −1 0

]T
0O11O12 =

[
0 0 0

]T
p12

0z13 =
[
0 0 1

]T
0O12O13 =

[
0 0 0

]T
p13

0z14 =
[
0 −1 0

]T
0O13O14 =

[
0 0 b1

]T
q14

0z15 =
[
0 −1 0

]T
0O14O15 =

[
0 0 b2

]T
q15

0z16 =
[
1 0 0

]T
0O15O16 =

[
0 0 b3

]T
p16

0z f =
[
0 0 1

]T
0O16OF =

[
LPX −LPY 0

]T

The second leg has some parameters linked to the first leg.
The forward kinematics of this chain will be gst2 and its initial
configuration is given Tab. 2. The last leg has the its initial
configuration given in Tab. 3. Each line of joint parameters gives
an homogeneous transform by applying the exponential mapping
of twists on SE(3).

KINEMATIC MODELING
The platform configuration should be expressed by five pa-

rameters, corresponding to the number of degrees of freedom of
the platform. A first solution is to consider : i) the platform ori-
gin 0O f with coordinates: [0O0O f [x]

0O0O f [y]
0O0O f [z]]

T in
F0; ii) the normal unit vector attached to the platform and point-
ing upward, with coordinates [0z f [x]

0z f [y]
0z f [z]]

T in F0 (only
two degrees of freedom since the norm of the vector is equal to
one).

Inverse Kinematics
Angle Between the Base and the First Closed

Chain. Let us rewrite the position of point O f in F1. We know
that the first and second leg lie in the same plane, so that only
one angle p1 can determine 0O0O f [x] and 0O0O f [z]. For a given
distance between O1 and O f , we have :

0O1O f [x] = −||O1Of||S1, (3)

0O1O f [z] = ||O1Of||C1. (4)

From Fig. 3, we can see that 0O1O f [x] = 0O0O f [x], and
0O1O f [z] = 0O0O f [z]−LBH . Finally:

p1 = arctan2(−0O0O f [x],
0O0O f [z] −LBH) (5)

First Leg. The first leg forward kinematics can be pro-
jected in the (O1,O6,O f ) plane by premultiplying gst1 by 1T0.
Hence the vector O5Of in F1 should have a null coordinate on
1O5O f [x]. This will be useful to obtain the angles p2, q3 and q4:

O5Of = O0Of −O0O5, (6)
1O5O f = 0T1gst1

(
I− f T5

)
[1 0 0 1]T . (7)

As we have the constraint that zf is orthogonal to O5Of, we
obtain:
(

1O5O f

)T 1z f = LPT

(
1z f [y]C2,3,4 +(1z f [z]C1 −

1z f [x]S1)S2,3,4

)
= 0.

(8)

Then we proceed to the substitution C2,3,4 = ε
√

1−S2,3,4
2

with ε ∈ {1,−1} in the previous equation. This substitution in-
troduces a new supplementary solution that has mathematically
to be considered. Once solved for S2,3,4, we have:

S2,3,4 =
ε1z f [y]√

1z f
2
[y] +

1z f
2
[x]S1

2 −21z f [x]
1z f [z]S1C1 − 1z f

2
[z]S1

2 + 1z f
2
[z]

(9)
A singularity appears when the denominator of S2,3,4 is null but

this case should not appears since it means that S2,3,4 = 0 and the
platform is perpendicular to the base.

The ε indeterminate represents a symmetric orientation of
the platform relative to the base frame along the (O f ,x0,z0) plane.
Numerically, we find that ε = −1 is for the correct orientation.

Because we only have the sinus of p2 + q3 + q4 = Σ2,3,4,
again two solutions are possible. To solve this, we impose a me-
chanical constraint: we suppose that the platform vector zf makes
a maximum angle of ± π

2 with the base vector z0 around the x0
axis of the base frame. The angle arcsin(S2,3,4) is then entirely
defined by its sinus that is in ]− π

2 ,
π
2 [.
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Now we solve for the whole kinematic chain. Let’s compute
O1O4 by two different ways. First by using the leg 1:

1O1O4|Leg 1 = 1T2
2T3

3T4[1 0 0 1]T

=




0
−a2S2 −a3S2,3

a1 +a2C2 +a3C2,3,4
1




. (10)

Then passing by the platform, we have:

1O1O4|Pl =




0O0O f [x]C1 +(0O0O f [z] −LBH )S1
0O0O f [y] +LBT −LPT C2,3,4 +LPHS2,3,4

−0O0O f [x]S1 +(0O0O f [z] −LBH )C1 −LPT S2,3,4 −LPHC2,3,4

1


 .

(11)
If we sum the square of the Y and Z coordinates in Eqns. (10)-

(11), we can obtain:
(

1O1O4[y]|Pl

)2
+
(

1O1O4[z]|Pl

)2
= a2

2 +2a2a3C3 +a2
3, (12)

that allows to compute:

q3 = arccos




−
(

1O1O4[y]|Pl

)2
−
(

1O1O4[z]|Pl

)2
+a2

2 +a2
3

2a2a3


 . (13)

Then we obtain p2 by the substitution: S2 = 2t2
1+t2

2
and C2 = 1−t22

1+t22

in Eqn. (10). After this substitution, we solve for t2 and have:

t2 =
a2 +a3C3 ±

√
a2

2 +2a2a3C3 +a2
3 −
(

1O1O4[y]|Pl

)2

a3S3 − 1O1O4[y]|Pl
. (14)

A singularity is shown when a3S3 = 1O1O4[y]|Pl. This means that
O1 and O4 are coincident, which should not happen in reality. A
final step gives:

p2 = 2arctan(t2), (15)

and finally:
q4 = Σ234 − p2 −q3. (16)

Second Leg. We use the same type of resolution for the
second leg. We now work on vector O10Of in frame F6. The
orthogonal constraint gives the following equation:
(

6O10O f

)T 6z f = LPT
6zyC7,8,9 +LPT (−6zx.S1 + 6zzC1)S7,8,9 = 0.

(17)
Then we solve for S7,8,9:

S7,8,9 =
ε6z f [y]√

6z f
2
[y] +

6z f
2
[x]S

2
6 −2S6C6

6z f
2
[x]

6z f
2
[z]−

6z f
2
[z]S6

2 + 6z f
2
[z]

.

(18)
This gives another supplementary singularity and two solutions

for S7,8,9. As before, ε = −1 and again two solutions exists for

Σ7,8,9 = p7 +q8 + p9. This is solved because of mechanical con-
straints: S7,8,9 ∈]− π

2 ,
π
2 [ and Σ7,8,9 = arcsin(S7,8,9).

The kinematic chain is solved again by computing 6O6O9|Pl

and 6O6O9|Leg 2 as done before. This gives an equation after
equaling the squared sum of Y and Z coordinates :

(
6O6O9[y]|Pl

)2
+
(

6O6O9[z]|Pl

)2
= a2

2 +2a2a3C8 +a3
2
, (19)

from which we have:

q8 = π− arccos




−
(

6O6O9 [y]|Pl

)2
−
(

6O6O9[z]|Pl

)2
+a2

2 +a3
2

2a2a3


 .

(20)
As before, p7 is obtained by the substitution S7 = 2t7

1+t2
7

:

t7 =
−a2 −a3C8 ±

√
a22 +2a2a3C8 +a32 −

(
6O6O9[y]|Pl

)2

a3S6 − 6O6O9[y]|Pl
. (21)

We find a singularity in t7 with the same meaning as for leg one.
Then :

p7 = 2arctan(t7), (22)

and finally:
p9 = Σ7,8,9 − p7 −q8. (23)

Platform Angle. For p5 (or p10), which is the last angle
that has to be found, we compute 0z f by using the first leg forward
kinematics. This gives:

0z f =




−C1S5 −S1C5
−C5S2,3,4

−S1S5 +C1C5C2,3,4


 . (24)

As this vector is known, we compute C5 and S5 that define com-
pletely the angle:

p5 = arctan2

(
−C1

0z[x] −S1
0z[z],

−S1
0z[x] +C1

0z[z]

C2,3,4

)
. (25)

A singularity is possible if C2,3,4 = 0. This is the case when zf is
collinear with y0.

Third Leg. Once we have solved the first 6-bar linkage,
we can define the platform orientation thanks to xf, yf and zf.
The last leg has six degrees of freedom and can be solved by
position/orientation considerations.

The first passive parameter to be found is p16. It is the angle
between the plane (O f ,xf,zf) and the plane (O16,z16,y16). This
angle is also the angle between the Y component and Z compo-
nent of fO13O16. As :

fO13O16 = fR0
0O13O f + fO f O16, (26)
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we get:

p16 = arctan2
(
((LBX + 0O0O f [x])S1 −C1)S2,3,4+

(LBY − 0O0O f [y])C2,3,4 −LPY ,

0z[x](
0O0O f [x] +LBX )+ 0z[y](

0O0O f [y] −LBY )+
0z[z](

0O0O f [z]−LBZ)
)
.

(27)

The last two parameters are q14 and q15. They are obtained by
first computing the vector O13O16 using the forward kinematics
of the leg and then by computing it using frames F0, F f , and F16.
This is similar to the previous calculus for legs one and two:

16O13O16[x] = −b1S14,15 +b2S15, (28)

16O13O16[z] = −b1C14,15 −b2C15, (29)

(
16O13O16[x]

)2
+
(

16O13O16[z]

)2
= b2

2 +2b1b2C14 +b1
2
. (30)

Hence we have two solutions for q14. But, because of mechani-
cal design, q14 is always in ∈ [0,π] and so:

q14 = arccos




(
16O13O16 [x]

)2
+
(

16O13O16[z]

)2
−b2

2 −b1
2

2b1b2


 .

(31)
Finally, we substitute t15 = tan q15

2 in Eqn. (28) and Eqn. (29).
After computations and solving for t15, we obtain:

q15 =−2arctan




b1C14 +b2 ±

√
b2

1 +b2
2 +2b1b2C14 −

(
16O13O16[x]

)2

−b1S14 + 16O13O16[x]


 ,

(32)
which gives another singularity when b1S14 = 16O13O16[x].

Forward Kinematics
First 6-bar Linkage. We study the first 6-bar linkage

in F1. This linkage has three degrees of freedom in the plane
(O1,z1,y1): rotation and position. In this linkage we have three
actuated degrees of freedom q3, q4 and q8. Hence we should be
able to completely define its configuration.

When only p2, q3 and q4 are given, a point on the first leg
draws a circle about the line (∆1) due to the angle p1. The point
O2 also draws a circle when p1 changes, but if we place our ref-
erential in F1, this point is static. Since O9 lies in the same plane
and p3 does not change their positions, we can consider that only
p2 determines the position of O9 in F1, and O9 describes a circle
centered on O2.

We consider the radius of this circle to be a constant dis-
tance : ||O2O9|| which can be written thanks to the projection of
O2O9 in F1:

1O2O9 =




0
2LPTC2,3,4 −a2S2 −a3S2,3
2LPT S2,3,4 +a2C2 +a3C2,3


 . (33)

Then:

||O2O9||
2 = 4LPT

(
LPT +a2S3,4 +a3S4

)
+a2

2 +a2
3 +2a2a3C3 . (34)

The second leg has the same property, i.e. each point gener-
ates a circle about (∆1). If we suppose that q8 is a constant, the
movement of O9 in F6 is a circle centered on O7 with a radius of
||O7O9||. As before:

||O7O9||
2 = a2

2 +a2
3 +2a2a3C8. (35)

Then we can have the intersection between these two circles.
Geometrically, this intersection is O9 and its position is ex-
pressed in F1 by:

(1O1O9[y])
2 +(1O1O9[z])

2 = ||O2O9||
2
, (36)

(
1O1O9 [y] −2LBT

)2
+(1O1O9[z])

2 = ||O7O9||
2
. (37)

We subtract Eqn. (37) from Eqn. (36) and solve for 1O1O9[y]

and 1O1O9[z]:

1O1O9[y] =
L2

BT + ||O2O9||
2 −||O7O9||

2

4LBT
, (38)

1O1O9[z] = ±
√

||O2O9||2 − (1O1O9[y])
2. (39)

Here two symmetrical solutions are possible, but in reality, only
1O1O9[z] > 0 will be kept. As we know the position of O9, we
deduce the angle p2 of the first leg from Eqn. (33) :

1O1O9[y] = (−a3S3 +2LPTC3,4)︸ ︷︷ ︸
t1

C2 +(−a2 −a3C3 −2LPT S3,4)︸ ︷︷ ︸
t2

S2,

1O1O9[z] = −t2C2 + t1S2.

(40)
We can finally deduce C2 and S2, which gives p2:

p2 = arctan2

(
t11O1O9 [z] + t21O1O9[y]

t2
1 + t2

2
,
−t21O1O9[z] + t11O1O9[z]

t2
1 + t2

2

)
.

(41)
With the same method, we get for p9:

1O1O9[y] = −a3S3︸ ︷︷ ︸
t3

C9 +(−a2 −a3C3)︸ ︷︷ ︸
t4

S9 +2LBT ,

1O1O9[z] = −t4C9 + t3S9 +2LBT .

(42)

Once solved :

p9 = arctan2

(
t31O1O9 [z] + t41O1O9 [y] −2t4LBT

t2
3 + t2

4
,
−t41O1O9 [z] + t31O1O9 [y] −2t3LBT

t2
3 + t2

4

)
.

(43)

The last parameter to be found is p4. As the linkage is a loop,
we have:

p7 = p2 +q3 +q4 − p9 −q8. (44)
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Second 4-bar linkage. When q14 and q15 are fixed, the
vector O13O17 becomes a constant length that can be identified
as the entire third leg (see Fig. 3). Hence O17 is positioned on a
sphere centered on O13 with a radius ||O13O17||. This length is
obtained and computed thanks to the forward kinematics of the
third leg by :

13O13O17 = 13T14
14T15

15T16
16T17 [1 0 0 1]T , (45)

=




LPXC14,15 −b3S14,15 −b2S14
0

LPXS14,15 +b3C14,15 +b2S14 +b1
1


 . (46)

On the other hand, the first 6-bar linkage is already fully de-
fined, and we obtain the position of point O17 by computing the
forward kinematics of the first leg and by an appropriate propor-
tional adjustment:

O1O17 =
LBT +LPY

LPT
(O1Of −O1O5) . (47)

In F1:

1O1O17 =




0
−a2S2 −a3S2,3 −LPHS2,3,4 +(LPT +LPY )C2,3,4

a1 +a2C2 +a3C2,3 +LPHC2,3,4 +(LPT +LPY )S2,3,4


 .

(48)
Because of the free joint p1, O17 draws a circle about (∆1). If we
write P (O17) the orthogonal projection of O17 on (∆1), then O17
lies on the circle centered on P (O17) with radius ||P (O17)O17||.
The first problem is to find the position of P (O17) in FO. We
know that P (O17) has the same Y coordinate as 0O17 but its X
and Z coordinates are those of O1 in F0, so:

0P (O17) =




0
−a3S2,3 −LPHS2,3,4 +(LPT +LPY )C2,3,4 −LBT

LBH


 . (49)

If we define a new coordinate frame FP (O17) =
(OP (O17),x0,y0,z0), we can rewrite all the unknown terms
in this frame coordinate attached to P (O17) with the same
orientation as F0. The equation of the circle becomes:

||P (O17)O17||
2 = (0O0O17[x])

2 +(0O0O17[z])
2 (50)

and the sphere of the third leg becomes:

||O13O17||
2 = (0O0O17[x] +LBX )2 +(0O0O17[z] −LBZ +LBH )2 +(LBY − 0O0O17 [y])

2
. (51)

Then of Eqns.(50) and (51) lead to an equation of the form:
a(0O0O17[z])

2 + b(0O0O17[z]) + c = 0, with a, b, c ∈ R. Thus
we have 2 solutions for 0O0O17[z] and therefore 2 solutions for
0O0O17[x]. Once solved, we get the position of O17 in F0. Finally
:

p1 = arctan2(0O0O17[x],
0O0O17[z] −LBH). (52)

Hence the position of O f is determined in FO.

The Platform Vector zf. To obtain the full attitude of
the platform, we do need to find the zf vector. This is equivalent
to find the position of point O16 in FO if we remember that :

zf =
OfO17 ×O17O16

||OfO17 ×O17O16||
. (53)

This problem is similar to the previous one and the way to
solve it is almost the same: we search for the intersection be-
tween a circle generated by O16 about the axis O5O17 with a
radius of ||O17O16|| and a sphere generated by O16 centered on
O13 with a radius of ||O13O16||.

The solution of this problem is not described because of lack
of space, but it leads to at least two results that are mechanically
possible. This is a common problem in forward kinematics of
parallel structures, and we cannot a priori solve the issue by ver-
ifying each choice and comparing the pose. However, the two
solutions are easily separatable as one gives a solution where the
third leg lies inside the operating-space and the other solution,
symmetrically, gives a solution outside the operating-space.

Approximated Jacobian
The computation of the Jacobian matrix of the system if of

great importance both for conception and control. Indeed, for
given operational force, the torque on each actuated joint can be
computed using the classical equation:

τ = JT F. (54)

This is very useful for e.g. optimization of the length param-
eters against the rigidity. The well known singularity condition
has also a great importance since the condition number (smallest
singular value of J divided by largest one) can give a good mea-
sure of the manipulability of the robot at an operating point. In
our particular case, we cannot easily derive the equation of nei-
ther the inverse nor the forward kinematics solution. Too many
dependencies are made on the many passive joints parameters.
We thus had to compute the approximation of the Jacobian ma-
trix, based on the numerical derivative of the forward kinematics
solution.

RESULTS
The inverse kinematic inputs 0O00 f and 0z f can be trans-

formed to special spherical-like coordinates, very comfortable
for representing the configuration of the platform :

the entry point: 0O0E = [Ex Ey Ez]
T ;

two rotation angles around this entry point: (φ,θ);
a constant platform altitude:(ρ).

One rotation is made about the x0 axis (φ), and about the y0
axis θ.
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Figure 4. NUMERICAL SIMULATION USING A DYNAMIC ENGINE

The position of the entry point and ρ are redundant informa-
tion. So we consider ρ to be a constant that should not change
over time (it is the altitude relative to the entry point). Once given
this additional constraint, we can easily transform one configu-
ration to another by the reversible transformation:

0z f =




cos(θ)sin(φ)
−sin(θ)

cos(θ)cos(φ)


 ,

0O0O f =0 O0E +ρ×0 z f . (55)

Numerical Simulation Using a Dynamic Engine
In order to verify the possible motions of the mechanism,

we used a numerical dynamic engine in C++ (Open Dynamic
Engine) to build a virtual mechanism that contains the same con-
figuration of the joints as our robot has (Fig. 4).

We implemented the inverse and forward kinematics to
verify the positioning (0O0E = [Ex Ey Ez]

T ) and orientation
(φ,θ,(ρ)) part of our model and we tested it by applying gravity
force to see how the mechanism reacts. The simulations confirm
that the kinematics models are well solved. The structure stays
rigid even when force is applied on the platform. The lacks of
this simulation are that no collisions are checked when the plat-
form moves and no planning has been made for trajectories. This
is an issue to be solved.

Reachable Workspace
The workspace is defined as the reachable 3D space of

the platform origin O f for a given configuration of 0z f . This
robot has five degrees of freedom, and therefore its reachable
workspace is difficult to draw . We present here only a particular
configuration for 0z f : θ = 0, φ = 0. A Matlab plot of the half
envelope of the workspace is given on Fig. 5. As we can see, the
workspace is almost spherical.

Figure 5. SIMPLIFIED WORKSPACE OF THE ROBOT

Figure 6. GENERAL LAYOUT

Real Prototype.
CT-Bot is the name given to the physical prototype of which

building is under way. In this section we survey the main steps of
the prototype design with some details concerning the mechani-
cal structure and the drive system. Figure 6 depicts the general
layout of the patient and the robotic device before he enters the
CT-scan ring.

The design process has been conducted with an extensive
usage of CAD system. Starting from the structural description of
the robot (mechanism topology, number of bodies, type of joints)
we modeled the robot to define its kinematics. At this stage, the
parts’ geometry is just a set of lines and points that represents the
robot skeleton.

Then the different components were designed with a direct
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Figure 7. CT-BOT IN THE CT-SCAN

Figure 8. CT-BOT CAD-MODEL

relationship with the robot skeleton. This top-down design ap-
proach takes advantage of the initial parameterization and en-
ables to change characteristic dimensions on the structure with-
out re-designing the parts.

Mechanical Structure of the CT-Bot Prototype. A
robot base support is attached with straps on the patient body.
The robot itself is then oriented and fixed on the base support.
This feature allows to choose the best initial configuration ac-
cording to the intervention objective.

In the mechanical design of the links we used bearings to
limit friction and backlash. A special care was taken to increase

structural stiffness of the system.
Figures 7 and 8, with the robot CAD model environment and

in the physical prototype, illustrate how we placed the third leg of
the robot at a certain distance away from the (O0,x0,y0) plane to
limit the number of non-plastic parts in the CT-plane. Similarly
we oriented actuation units of the third leg.

Drive System. Each actuation unit comprises a gear
housing specifically designed for this application, an Harmonic
Drive reduction gearing, an ultrasonic motor and an incremental
encoder. Ultrasonic motors have several advantages over other
type of actuators including :

a good torque to weight ratio ;
a low rotational speed ;
a high holding torque when not powered.

These features are important for our application from the point
of view of the effort to be exerted by the robot and the required
safety for this medical device. In case of control failure, the robot
holding the needle will remain motionless.

The resulting actuation unit has an outer size included in a
cylinder of 75 mm in length and 50 mm in diameter.

Manufacturing. Most of the parts composing the robot
have been obtained through rapid prototyping with a laser sin-
tering system. This enables to move directly from CAD files
to functional plastic parts in a fraction of the time required for
traditional machining and tooling processes. The material em-
ployed is glass-filled polyamide powder to comply with the CT-
Scan imaging requirements.

So far, the following elements have been achieved on the
prototype :

construction of the different robot components ;
mechanical assembly of the robot.

The forthcoming stages concerning the physical prototype
include the resolution of sterilization-related issues. These con-
straints were present from the beginning in the design process
and practical solutions are to be implemented to pass medical
approval. Some preliminary orientations have already been cho-
sen.

Another important subject is the needle insertion tool to be
mounted as end-effector on the platform. This system comprises
force sensor and will be crucial for task execution.

CONCLUSION
We have presented a new five-degree-of-freedom parallel

manipulator intended to help practitioners in percutaneous inter-
ventions realized under X-rays imaging devices. These medical
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procedures imply many strong constraints on the robotic assis-
tant such as transparency to X-rays, compactness, stiffness and
safety.

The modeling of the mechanism has been conducted using
the local product of exponentials formalism. Numerical simula-
tions on a wire-frame system enabled to check the main limits
of the operational workspace. The results obtained from inverse
kinematic analysis were input data to the design process. Starting
from topological and dimensional description of the structure, a
fully parametric CAD model of the robot has been constructed.
This model helped to iteratively improve the design and take into
account the technical limitations (actual part geometry, mechan-
ical stops).

As a current result, a physical prototype has been built. Re-
maining tasks include cabling, electrical connection and con-
struction of the insertion tool to be mounted as end-effector on
the platform.
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