

Abstract--This paper deals with real-time image processing of

crowded outdoor scenes with the objective of creating an effective
traffic management system that monitors urban settings (urban
intersections, streets after athletic events, etc.). The proposed
system can detect, track, and monitor both pedestrians (crowds)
and vehicles. We describe the characteristics of the tracker that is
based on a new detection method. Initially, we produce a motion
estimation map. This map is then segmented and analyzed in
order to remove inherent noise and focus on particular regions.
Moreover, tracking of these regions is obtained in two steps:
fusion and measurement of the current position and velocity, and
then estimation of the next position based on a simple model. The
instability of tracking is addressed by a multiple-level approach to
the problem. The computed data is then analyzed to produce
motion statistics. Experimental results from various sites in the
Twin Cities area are presented. The final step is to provide this
information to an urban traffic management center that monitors
crowds and vehicles in the streets.

Index Terms—Tracking, Crowd detection.

I. INTRODUCTION

onitoring crowded urban scenes is a difficult problem.
Despite significant advances in traffic sensors, modern

monitoring systems cannot effectively handle busy
intersections. This is because there are too many moving
objects (vehicles and pedestrians). Tracking humans in
outdoor scenes is also very complex. The number of
pedestrians and vehicles in a scene varies and is usually
unpredictable. Recently, there was progress on techniques to
track an arbitrary number of pedestrians simultaneously.
However, as the number of pedestrians increases, system
performance degrades due to the limited processing power.
When the number of pedestrians exceeds a threshold value, the
processing rate drops dramatically. This makes it hard to keep
accurate track of every pedestrian and vehicle because of the
large displacement among pedestrian and vehicle locations in
the processed frames.

We propose a vision-based system that can monitor busy
urban scenes. Our system is not only limited to vehicles but
can deal with pedestrians and crowds. Our approach is robust
with respect to a variety of weather conditions and is based on
an efficient scheme to compute an approximation of optical

Manuscript received March 15, 2002. This work was supported in part by
the Minnesota Department of Transportation and in part by the National
Science Foundation through award #CMS-0127893.

B. Maurin is in France.
O. Masoud and N. P. Papanikolopoulos are with Department of Computer

Science and Engineering at the University of Minnesota, MN 55455 USA (e-
mail: masoud@cs.umn.edu, npapas@cs.umn.edu).

flow. The optical flow helps us classify the different objects in
the scene while certain statistics for each object are
continuously updated as more images become available.

Addressing busy intersections can have a significant impact
on several traffic operations in urban areas and on some more
general applications. One traffic operation which can be
affected is the automated walk signal request. Currently, a
pedestrian is required to press a button to request a walk signal
at a crosswalk. It may be desirable to automate this process
especially when there is a large number of pedestrians waiting
to cross the street. Crowd detection can be used in this case.
Another application is the study of flow patterns at certain
intersections. It may be desirable as a city planning
consideration to study the use of crosswalks at a certain
intersection. Flow data of pedestrians crossing the street
throughout the day can be collected and used to make
decisions such as building a pedestrian bridge, etc. Finally, our
proposed system may be used to monitor crowds outside
schools, nursing homes, train tracks, and at athletic events.
One interesting application is to compute crowd density (with
obvious public safety applications). In general, monitoring
areas where accidents occur often can result into early warning
signals and can reduce deadly consequences.

The paper starts with a review of previous work, continues
with the detection and tracking schemes, and concludes with
experimental results.

A. Previous work
Many methods have been proposed for the detection and

tracking of moving objects; many of these have focused on the
detection and tracking of traffic objects. The applications of
this line of research are multiple: tracking of targets, vision-
based robot manipulators, presence detectors, analysis of
visual data, etc.

The first generation trackers made several assumptions
regarding the nature of the objects in the scene. These
assumptions resulted in acceptable tracking performance yet
the trackers were not robust to changes in the scene (e.g.,
movement of the camera or small changes in the shape of the
object). Baumberg and Hogg in [1] introduced one of first
trackers. It was based on active contours to track the silhouette
of a person. Others, such as Rossi and Bozzoli in [2],
addressed the problem by locating the camera above the scene,
which avoids the creation of occlusions. But this condition is
not easy to implement, especially in traffic applications. The
systems described require extensive models of the objects to
be tracked. They also require some knowledge of their
dynamic characteristics. We are going to use only a few

Monitoring Crowded Traffic Scenes
Benjamin MAURIN, Osama MASOUD, Nikolaos PAPANIKOLOPOULOS, Senior Member, IEEE

M

assumptions on the models in order not to restrict our tracker
to a single class of detection. For example, no limits will be
assumed for the velocities of the traffic objects, their sizes,
their accelerations, or their shapes.

Systems based only on background subtraction give good
results but fail to detect and track traffic entities when they get
close to each other. One example of such a method can be
found in [3]. Our system extends that approach by utilizing
motion cues. Cutler and Tuck [4] developed a recognition and
classification module for motion which aimed to interpret
gestures. Their work is based on the analysis of moving areas
in a video sequence. This makes it more of a motion classifier
than a tracker. Our detection method is close to [4] and to
Dockstader and Tekalp’s work [5], which addressed robust
motion estimation.

II. PROCESSING OF THE IMAGE SEQUENCES

A. Detection
We use grayscale image sequences as input. We do not

make any assumptions on the nature of the scene (night, day,
cloudy, rainy, winter, summer, etc.). Elements of the scene are
not known a priori and the sizes of the traffic objects (vehicles
and pedestrians) are also unknown. We apply a mask to the
image to remove undesired regions such flashing billboards or
reflective building walls. In the case of groups of people, it is
difficult to decompose a group into individuals. Instead, one
would attempt to track the group as one entity. A possible way

to do this is to calculate the movement of each point and then
group together points with similar motion characteristics. An
assumption that we make is that a crowd of pedestrians is a
slow deformable object with a principal direction of motion.

We have developed a method to detect and track blobs.
Because outdoor environments cannot be modeled accurately,
it is difficult to separate the traffic objects from the
background. Outdoor images can have very bad quality,
especially at night. Moreover, the great difference between day
and night image sequences (see Fig. 1) explains why a robust
detector needs to be developed. Our method combines both
background removal and optical flow segmentation in an effort
to increase robustness. Background removal classifies pixels
as belonging to the foreground or the background. However,
this information is not sufficient in certain cases. In particular,
during the motion of two groups passing each other, one
cannot estimate the speed or direction. Background removal is
useful in the case of easily distinguishable objects with
minimal occlusion. For this reason, we use an approximation
of optical flow to provide the extra information needed.

1) Background removal
We use a detection scheme that subtracts the image from the

background. The idea is based on an adaptive background
update. The update equations are as follows:

()

),(OR

)(NOT,
16

15
AND

,AND

bkgnd

mask obj.
bkgndframecurrent

mask obj.bkgnd

BAM

I
MI

B

IMA

=

��
�

�
��
�

� ⋅+
=

=

 (1)

where bkgndM is the estimated background, framecurrent I is the

current image, and mask obj.I is a binary mask containing the

detected foreground so far. mask obj.I is in turn computed as

��

�
�
� <−=

=

 otherwise0
 if1

),OR(

bkgndframecurrent
_

__mask obj.

σKMII

III

masknsubtractio

maskopticalmasknsubtractio

 (2)

where masknsubtractioI _ is the binary mask of the foreground

computed by background subtraction and maskopticalI _ is the
foreground computed using optical flow estimation as
discussed below. The threshold used is a multiple (K) of the
standard deviation σ of camera noise (modeled as white
noise). K was decided empirically to be 6.

B. Motion extraction
Motion extraction can be performed accurately using optical

flow. However, optical flow estimation is a difficult problem
to solve in real-time. Like Sun [6], Dockstader and Tekalp [5],
and other researchers, we will concentrate on the speed
requirements of the algorithm more than on the accuracy of the
estimation of the optical flow. In [7], Galvin et al. give a
comparison of estimation algorithms for optical flow. Of all
the algorithms presented, only two will be considered because
of their simplicity and speed. The others, such as fast
separation in pyramids, the robust estimation of Black and

(a) Night video

(b) Day video

Fig. 1. Traffic scenes from the Xcel Energy Center in St Paul, MN.

Anandan [8], or the wavelet decomposition for fast and
accurate estimation by Bernard [9], are too complex to
implement in real-time.

A differential method for computing optical flow was
explained in Barron et al. [10]. It was also used by Rwekamp
and Peter [11] with the goal of using ASIC processors for the
real-time detection of movement. The idea is to use a
minimization procedure where a spatial estimate of the
derivative by a Laplacian is employed. One may use a spatial
iterative filter to obtain a more precise estimation. We have
experimented with this method using a floating point as well as
an integer implementation (for efficiency concerns). Based on
our experiments, we concluded that although this method
works well with synthetic images, it is sensitive to noise which
is present in our video sequences. In addition, the
computational cost is prohibitive (less than 1 fps in the floating
point implementation).

Our method is a correlation method inspired from [4]. The
idea is to find the velocity vector of each pixel by performing a
local search. Given a pixel),(yxp in image 1−iI , we conduct
a minimum cost search in a predefined pattern around),(yx
in iI . We use the sum of absolute differences (SAD) for the
cost function in a predefined neighborhood size. The
corresponding point in iI for point p is therefore estimated
as:

�
�
�

�
�
�
�

�
−+−+−= �

∈
−

∈),od(Neighborho),(
1

),Pat(),(
),(),(minarg)ˆ,ˆ(

vuba
ii

yxvu
vbyuaxIbaIvu (3)

where Pat() defines a search pattern around a pixel and
od()Neighborho defines a neighborhood size. The optical

flow of p becomes),()ˆ,ˆ(yxvu − . Computing (3) for each
pixel can be computationally expensive. In [4], inter-image
differencing is used to limit the number of pixels for which
optical flow is computed to those pixels located near motion.
This makes the algorithm efficiency dependent on the amount
of motion in the image. Instead, we utilize the inherent
redundancy in (3) and our vision processor board (Matrox
Genesis) capabilities to compute (3) for every pixel in a
constant time. Our method works as follows: We first compute
a set of difference images between 1−iI and iI , where iI is
shifted each time according to Pat() . Furthermore, we
augment each pixel in the difference image with the value of
this shift. Then we convolve each difference image with a
kernel of all 1’s, whose size is fixed and is determined by the

od()Neighborho function. This results in the sum and hence
the value of the cost function. Finally, we find the minimum of
all the convolved difference images. The estimated optical
flow for every pixel can now be retrieved from the augmented
offsets in the resultant image.

The kernel can be of any size. The larger it is, the less the
noise there will be. But that also means less sensitivity. A good
compromise is a size of 5x5 or 7x7. The pattern can be of any
shape, although a circular pattern would make the most sense.
However, we use a sparse pattern of vertical and diagonal lines

for efficiency reasons as in [4]. In our monitoring application,
the cameras used are usually rather far away from the scene
and motion does not exceed 2 to 3 pixels per frame. Therefore,
a typical pattern is defined as follows:

1 1 1
 1 1 1
1 1 1 1 1
 1 1 1
1 1 1

To minimize the effect of noise, we use a threshold σK as
before on the cost function (normalized by the kernel size).
Costs smaller than the threshold are therefore interpreted as
noise rather than motion.

This method gave very good results. The kernel that was
used for the summation is 7x7. On 320x240 images with a
pattern of 3± pixels (one pixel larger than the one shown
above), the processing rate is approximately 4 fps. On
160x120 images, it is 10 fps. A pattern of 2± pixels resulted
in a rate of 15 fps on 160x120 images.

C. Segmentation
The segmentation phase aims at extracting contiguous

groups of pixels, or blobs, that have similar properties. In the
case of the foreground obtained from background subtraction,
this can be achieved using any connected component
extraction algorithm (e.g., border following). In the case of
optical flow, we use the floodfill algorithm and take the
direction of the flow into consideration while performing
segmentation. The basic idea is to cluster together contiguous
pixels whose optical flow direction differs by an amount below
a threshold. At the end of this stage, we will have computed
blobs and their attributes. The computed attributes are the
number of pixels (size), the center of mass, the mean velocity,
the mean direction, and the bounding rectangle. The latter is
computed by computing the eigenvectors of the covariance
matrix that describes the distribution of the pixels in the blob.
The length and width of the rectangle are set to a multiple of
the square roots of the eigenvalues. We found that a factor of
1.5 works best in describing these rectangles.

III. TRACKING
Tracking is an essential component of the system. A

diagram of the system is shown in Fig. 2. As explained above,
optical flow is estimated by the correlation method and the
background is used to find motionless foreground objects. The
fusion of both is then segmented into blob entities.

Blobs are used for the layers model. They serve as
measurements for higher level entities (called regions). A
confidence value is associated to each of the possible links
(called relationship) between two entities. This value depends
on the overlap surface, the distance, and speed similarity
between the two entities.

A. Layer model
1) First level: blobs

We model a blob using its position, size, bounding rectangle
area, and velocity. These parameters are computed during the
floodfill algorithm.

2) Second level: regions
The intrinsic parameters are the same as those for blobs.

The differences are in the way they are computed. The regions
inherit values from their parent blobs at creation time but they
are adapted during tracking. Other properties, like the time of
existence or inactivity, are also used for regions.

B. Details of relationships
Blob-blob relationships are one-to-one and relate blobs in

one frame to blobs in the next frame. Blob-region relationships
are many-to-one. All relationships are decided based on the
confidence values),(βα which reflect the similarity between
two entities A and B . We introduce thresholds to define the
presence or absence of a relationship between two entities. In
our tracker, α is associated with the position and the area of
the entities while β is related to the similarity in motion
direction.

To compute α , we first define Overlap() between two
rectangles as the ratio of the area of their intersection to the
maximum area of the two rectangles. The intersection of the
two rectangles is computed by polygon clipping. We set

() ()
10

3),Distance(7,Overlap, ⋅+⋅= BABABAα (4)

where)Distance(, is computed with a fuzzy model using the
distance between the two centroids and the perimeter of each
rectangle:

()�
�

�

�

�
�

�

�

⋅
−=

A
AB

BA
Perimeter2

1,0max),(Distance . (5)

In the case of blob-blob relationships, the above coefficients
are set to (5,5) instead of (7,3). This is explained by the fact
that a relationship between a region and a blob is supposed to

be based more on the overla
We also use a fuzzy mo

difference in direction, D .
below which, differences are

��

�
�

�

−−
=

90
(1,0max(

 1
),(TDBAβ

Once α and β are calcu
and blob-region relationship
a threshold (10%) to guaran
entities. Those relationships
fraction of all possible relati
value of βα + . The blo
chosen by selecting the rela
values.

1) Region creation
If a blob has been tracke

with blob-to-blob %50>α
is created. The new region
blob.

2) Merging blobs
The relationships betwee

one. In other words, s
measurements for a regio
relationships to a particular
having relationship confiden
the maximum value and the
of blobs will be used to est
the region at the next iterat
blobs is merged into a reg
centroid, the minimal bou
velocity of the group. The
regions measurement/estim
below.

C. Kalman filtering
We use the Kalman filter t

consists of position and velo
other quantities which are as
covariance matrix entries (in
covariance matrix that descr

Background

Merging

Segmentation

Blob

Monitor

Statistics

Video

Optical flow

Region Crowd

Model/Estim Model/Estim

Fig. 2. Tracking system.

STATISTICS ON 821 F
Direction (degrees) O

Fl
Size (pixels) 2,0

Rect. Area (pixels)
Density(Size/Area)

No Motion
-135 6
-90 6
-45 2
0 6

45 6
90

135 1
180
TABLE I
RAMES DURING 120 SECONDS
ptical
ow

Blobs Regions

19,710 1,947,316 2,255,602
N/A 1,136,066 1,433,754
N/A 1.7 1.57
39 N/A N/A
 (10) 6 13
 (10) 1 5

0 (33) 1 8
 (10) 79 44
 (10) 3 8

2 (3) 3 5
2 (20) 1 13
0 (0) 2 0
p than the position.
del to compute β based on the
This time, we use a threshold, T ,
 considered negligible:

<

otherwise.))
, if TD

 (6)

lated, we consider each blob-blob
 that has a value of α larger than
tee a minimal connection between
 that pass this test (usually a small
onships) are assigned a confidence
bs’ one-to-one relationships are
tionships with highest confidence

d for at least four frames in a row
 in each relationship, a new region
inherits the parameters of the last

n blobs and regions are many-to-
everal blobs can be used as
n. Among all the blobs with
 region, we create a list of blobs
ce values ranging between 70% of
 maximum value itself. This group
imate the location measurement of
ion. In other words, this group of
ion. To do this, we compute the
nding rectangle, and the mean

n, we use this information in the
ation part (filtering) described

o track regions. The state vector
city parameters. It also contains
sumed constant. They are the
itially those corresponding to the
ibes the distribution of the pixels

in the parent blob). These will be used to specify the size and
orientation of the region’s rectangle as was done for blobs (see
II.C). The state vector also contains a constant value
describing the size of the region (in pixels). Therefore,

[]syxyxyyxxX ><><><= ,22
�� (7)

The measurement vector will have everything except the
velocities. It is clear that the system can be split into smaller
ones: one for coordinates and velocities, and one for each of
the constant parameters.

Measurement noise is related to the blob-region relationship
confidence values. In particular, if we let

1

5

1 −
+

=Σ βα
, (8)

the measurement noise covariance for the system of
coordinates and velocities is

�
�

�
�
�

�

Σ
Σ

=
2

2

0
0

nR , (9)

and it is 2
� for the systems of constant parameters.

IV. EXPERIMENTAL RESULTS
We tried our algorithms on several outdoor scenes from the

Twin Cities area. One area where one may find crowds is
around the Xcel Energy Center in St Paul. We filmed scenes
during day and night. The processing rate of our program
depends on the desired accuracy of the optical flow approach.
In the general case, a pattern with a radius of one pixel is
enough to detect objects on images with a size of 160x120
pixels. All the results are obtained with a 5x5 Kernel, which
allows for very good detection without significant corruption
by noise. With these parameters, our tracker runs at 15 fps
(this includes output display). If we use a pattern of radius 2,
the frame rate drops to 10 fps. One thing worth mentioning is
that in case some frames have to be dropped, it is important to
drop the same number of frames consistently, e.g., one frame
processed followed by two dropped and so on. Otherwise we
get temporal instability. The reason is that optical flow
estimation assumes that the time interval between two frames
is always the same. For this reason, our tracker runs at speeds
of either 15 fps or 10 fps, or)1/(30 +n fps (n being the
number of skipped frames).

A. Statistics
The first result we present shows statistics gathered over a

time period of two minutes. These statistics were computed
from optical flow, blobs, and regions. The values are shown in
Table 1. The statistics were computed by accumulating the
flow, region, and blob directions. In the case of optical flow,
the table shows the percentage of pixels moving in different
directions (the values in parenthesis show the percentage out
of moving pixels only). In the case of blobs (and regions), the
percentages are also of pixels but the directions are those of
blobs (and regions) containing the pixels. The frame rate was
10 fps. Notice that blobs were not able to sufficiently capture

the motion in the direction of 135 degrees. This is due to the
fact that the blobs direction may be inaccurately initialized
when the underlying motion of pixels is not consistent. This
also stresses the need for the regions level, which was able to
capture that direction based on blob information even though
the information is not accurate. Notice also that the most
frequent region direction is 0 whereas the most frequent pixel
direction is –45. This is merely a quantization issue since pixel
directions are quantized while region directions are not.

The density represents the ratio of the number of pixels in a
blob (or region) to the area of the bounding rectangle of the
blob (or region). This value exceeds one because of
inaccuracies of modeling the blob (or region) as a rectangle.
However, it is a useful indicator to identify a crowd; a region
representing a crowd would have a high density (above 0.75).
Other parameters that can be used to identify a crowd are the
area (sufficiently large) and the speed (sufficiently small).

B. Most used area
Fig. 3(b) is a representation of most used areas in the scene

which is a direct result computed by accumulating optical flow
values over a period of 2 minutes.

C. Tracking results
Fig. (3) shows some of the tracking results. The results are

presented as snapshots every two seconds. Rectangles
represent regions. Regions with a cross represent detected
crowds. The numbers shown are the region identifiers. Fig.
3(a) shows the adaptively estimated background. Fig. 3(c-e)
are from a day-time sequence and Fig. 3(f-h) are from a night
sequence.

V. CONCLUSIONS
This paper presents a vision-based system for monitoring

crowded urban scenes. Our approach combines an effective
detection scheme based on optical flow and background
removal that can locate vehicles, individual pedestrians, and
crowds. The detection phase is followed by the tracking phase
that tracks all the detected entities. Traffic objects are not
simply tracked but also a wealth of information is gathered
about them (position, velocity, acceleration/deceleration,
bounding rectangle, and shape features). Potential applications
of our methods include intersection control, traffic data
collection, and even crowd control after athletic events.
Experimental results in different lighting conditions are
presented. Future work will be focused on methods to deal
with shadows and occlusions.

ACKNOWLEDGEMENT
This work was supported in part by the Minnesota

Department of Transportation and in part by the National
Science Foundation through award #CMS-0127893.

REFERENCES
[1] A. Baumberg and D. Hogg, 'An Efficient Method for Contour Tracking

Using Active Shape Models', in Proc. of IEEE Workshop on Motion of

Non-rigid and Articulated Objects, pp. 195-199, IEEE Computer
Society Press, November 1994.

[2] M. Rossi and A. Bozzoli, 'Tracking and Counting Moving People', Proc.
Second IEEE International Conference on Image Processing, pp. 212-
216, 1994.

[3] O. Masoud, Ph.D. Thesis on 'Tracking and Analysis of Articulated
Motion with an Application to Human Motion', University of
Minnesota, Minneapolis, March 2000.

[4] R. Cutler and M. Turk, 'View-based Interpretation of Real-time Optical
Flow for Gesture Recognition', Third IEEE International Conference on
Automatic Face and Gesture Recognition, Nara, Japan, April 14-16,
1998.

[5] S. L. Dockstader and A. M. Tekalp, 'Tracking multiple objects in the
presence of articulated and occluded motion', Proc. Workshop on
Human Motion, pp. 88-95, Austin, TX, December 2000.

[6] C. Sun, 'A Fast Stereo Matching Method', Digital Image Computing:
Techniques and Applications, pp. 95-100, Massey University,
Auckland, New Zealand, December 10-12, 1997.

[7] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills, 'Recovering
Motion Fields: An Evaluation of Eight Optical Flow Algorithms',
British Conference on Computer Vision, Computer Science Department
University of Otago, New Zealand.

[8] M.J. Black and P. Anandan, 'A Framework for the Robust Estimation of
Optical Flow', Proc. Fourth Int. Conf. on Computer Vision (ICCV'93),
Berlin, Germany, May 1993.

[9] C. Bernard, Ph.D. Thesis on 'Ill-conditioned Problems: Optical Flow and
Irregular Interpolation', document on the web,
www.cmap.polytechnique.fr/~bernard/these, 1999.

[10] S.S. Beauchemin and J.L. Barron, 'The Computation of Optical Flow',
Dept. of Computer Science, University of Western Ontario, ACM
Computer Surveys, vol. 27, no. 3, pp. 433-467, 1995.

[11] T. Rwekamp and L. Peter, 'A Compact Sensor for Visual Motion
Detection', VIDERE, vol. 1, no. 2, Article 2, MIT Press, Winter 1998.

(a) Estimated background (b) Most used areas

(c) Frame 1010 (d) Frame 1030 (e) Frame 1048

(f) Frame 400 (g) Frame 420 (h) Frame 440

Fig. 3. Tracking results.

	INTRODUCTION
	Previous work

	Processing of the Image Sequences
	Detection
	Background removal

	Motion extraction
	Segmentation

	Tracking
	Layer model
	First level: blobs
	Second level: regions

	Details of relationships
	Region creation
	Merging blobs

	Kalman filtering

	Experimental Results
	Statistics
	Most used area
	Tracking results

	Conclusions

