
 

  
Abstract--This paper deals with real-time image processing of 

crowded outdoor scenes with the objective of creating an effective 
traffic management system that monitors urban settings (urban 
intersections, streets after athletic events, etc.). The proposed 
system can detect, track, and monitor both pedestrians (crowds) 
and vehicles. We describe the characteristics of the tracker that is 
based on a new detection method. Initially, we produce a motion 
estimation map. This map is then segmented and analyzed in 
order to remove inherent noise and focus on particular regions. 
Moreover, tracking of these regions is obtained in two steps: 
fusion and measurement of the current position and velocity, and 
then estimation of the next position based on a simple model. The 
instability of tracking is addressed by a multiple-level approach to 
the problem. The computed data is then analyzed to produce 
motion statistics. Experimental results from various sites in the 
Twin Cities area are presented. The final step is to provide this 
information to an urban traffic management center that monitors 
crowds and vehicles in the streets. 
 

Index Terms—Tracking, Crowd detection.  

I. INTRODUCTION 

onitoring crowded urban scenes is a difficult problem. 
Despite significant advances in traffic sensors, modern 

monitoring systems cannot effectively handle busy 
intersections.  This is because there are too many moving 
objects (vehicles and pedestrians). Tracking humans in 
outdoor scenes is also very complex. The number of 
pedestrians and vehicles in a scene varies and is usually 
unpredictable. Recently, there was progress on techniques to 
track an arbitrary number of pedestrians simultaneously. 
However, as the number of pedestrians increases, system 
performance degrades due to the limited processing power. 
When the number of pedestrians exceeds a threshold value, the 
processing rate drops dramatically. This makes it hard to keep 
accurate track of every pedestrian and vehicle because of the 
large displacement among pedestrian and vehicle locations in 
the processed frames. 

We propose a vision-based system that can monitor busy 
urban scenes. Our system is not only limited to vehicles but 
can deal with pedestrians and crowds. Our approach is robust 
with respect to a variety of weather conditions and is based on 
an efficient scheme to compute an approximation of optical 
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flow. The optical flow helps us classify the different objects in 
the scene while certain statistics for each object are 
continuously updated as more images become available. 

Addressing busy intersections can have a significant impact 
on several traffic operations in urban areas and on some more 
general applications. One traffic operation which can be 
affected is the automated walk signal request. Currently, a 
pedestrian is required to press a button to request a walk signal 
at a crosswalk. It may be desirable to automate this process 
especially when there is a large number of pedestrians waiting 
to cross the street. Crowd detection can be used in this case. 
Another application is the study of flow patterns at certain 
intersections. It may be desirable as a city planning 
consideration to study the use of crosswalks at a certain 
intersection. Flow data of pedestrians crossing the street 
throughout the day can be collected and used to make 
decisions such as building a pedestrian bridge, etc. Finally, our 
proposed system may be used to monitor crowds outside 
schools, nursing homes, train tracks, and at athletic events. 
One interesting application is to compute crowd density (with 
obvious public safety applications). In general, monitoring 
areas where accidents occur often can result into early warning 
signals and can reduce deadly consequences. 

The paper starts with a review of previous work, continues 
with the detection and tracking schemes, and concludes with 
experimental results. 

A. Previous work 
Many methods have been proposed for the detection and 

tracking of moving objects; many of these have focused on the 
detection and tracking of traffic objects. The applications of 
this line of research are multiple: tracking of targets, vision-
based robot manipulators, presence detectors, analysis of 
visual data, etc. 

The first generation trackers made several assumptions 
regarding the nature of the objects in the scene. These 
assumptions resulted in acceptable tracking performance yet 
the trackers were not robust to changes in the scene (e.g., 
movement of the camera or small changes in the shape of the 
object). Baumberg and Hogg in [1] introduced one of first 
trackers. It was based on active contours to track the silhouette 
of a person. Others, such as Rossi and Bozzoli in [2], 
addressed the problem by locating the camera above the scene, 
which avoids the creation of occlusions. But this condition is 
not easy to implement, especially in traffic applications. The 
systems described require extensive models of the objects to 
be tracked. They also require some knowledge of their 
dynamic characteristics. We are going to use only a few 
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assumptions on the models in order not to restrict our tracker 
to a single class of detection. For example, no limits will be 
assumed for the velocities of the traffic objects, their sizes, 
their accelerations, or their shapes. 

Systems based only on background subtraction give good 
results but fail to detect and track traffic entities when they get 
close to each other. One example of such a method can be 
found in [3]. Our system extends that approach by utilizing 
motion cues. Cutler and Tuck [4] developed a recognition and 
classification module for motion which aimed to interpret 
gestures. Their work is based on the analysis of moving areas 
in a video sequence. This makes it more of a motion classifier 
than a tracker. Our detection method is close to [4] and to 
Dockstader and Tekalp’s work [5], which addressed robust 
motion estimation. 

II. PROCESSING OF THE IMAGE SEQUENCES 

A. Detection 
We use grayscale image sequences as input. We do not 

make any assumptions on the nature of the scene (night, day, 
cloudy, rainy, winter, summer, etc.). Elements of the scene are 
not known a priori and the sizes of the traffic objects (vehicles 
and pedestrians) are also unknown. We apply a mask to the 
image to remove undesired regions such flashing billboards or 
reflective building walls. In the case of groups of people, it is 
difficult to decompose a group into individuals. Instead, one 
would attempt to track the group as one entity. A possible way 

to do this is to calculate the movement of each point and then 
group together points with similar motion characteristics. An 
assumption that we make is that a crowd of pedestrians is a 
slow deformable object with a principal direction of motion. 

We have developed a method to detect and track blobs. 
Because outdoor environments cannot be modeled accurately, 
it is difficult to separate the traffic objects from the 
background. Outdoor images can have very bad quality, 
especially at night. Moreover, the great difference between day 
and night image sequences (see Fig. 1) explains why a robust 
detector needs to be developed. Our method combines both 
background removal and optical flow segmentation in an effort 
to increase robustness. Background removal classifies pixels 
as belonging to the foreground or the background. However, 
this information is not sufficient in certain cases. In particular, 
during the motion of two groups passing each other, one 
cannot estimate the speed or direction. Background removal is 
useful in the case of easily distinguishable objects with 
minimal occlusion. For this reason, we use an approximation 
of optical flow to provide the extra information needed. 

1) Background removal 
We use a detection scheme that subtracts the image from the 

background. The idea is based on an adaptive background 
update. The update equations are as follows: 
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where bkgndM  is the estimated background, framecurrent I  is the 

current image, and mask obj.I  is a binary mask containing the 

detected foreground so far. mask obj.I  is in turn computed as 
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where masknsubtractioI _  is the binary mask of the foreground 

computed by background subtraction and maskopticalI _ is the 
foreground computed using optical flow estimation as 
discussed below. The threshold used is a multiple ( K ) of the 
standard deviation σ  of camera noise (modeled as white 
noise). K  was decided empirically to be 6. 

B. Motion extraction 
Motion extraction can be performed accurately using optical 

flow. However, optical flow estimation is a difficult problem 
to solve in real-time. Like Sun [6], Dockstader and Tekalp [5], 
and other researchers, we will concentrate on the speed 
requirements of the algorithm more than on the accuracy of the 
estimation of the optical flow. In [7], Galvin et al. give a 
comparison of estimation algorithms for optical flow. Of all 
the algorithms presented, only two will be considered because 
of their simplicity and speed. The others, such as fast 
separation in pyramids, the robust estimation of Black and 

 
(a) Night video 

 

 
(b) Day video 

 
Fig. 1.  Traffic scenes from the Xcel Energy Center in St Paul, MN. 



 

Anandan [8], or the wavelet decomposition for fast and 
accurate estimation by Bernard [9], are too complex to 
implement in real-time. 

A differential method for computing optical flow was 
explained in Barron et al. [10]. It was also used by Rwekamp 
and Peter [11] with the goal of using ASIC processors for the 
real-time detection of movement. The idea is to use a 
minimization procedure where a spatial estimate of the 
derivative by a Laplacian is employed. One may use a spatial 
iterative filter to obtain a more precise estimation. We have 
experimented with this method using a floating point as well as 
an integer implementation (for efficiency concerns). Based on 
our experiments, we concluded that although this method 
works well with synthetic images, it is sensitive to noise which 
is present in our video sequences. In addition, the 
computational cost is prohibitive (less than 1 fps in the floating 
point implementation).  

Our method is a correlation method inspired from [4]. The 
idea is to find the velocity vector of each pixel by performing a 
local search. Given a pixel ),( yxp  in image 1−iI , we conduct 
a minimum cost search in a predefined pattern around ),( yx  
in iI . We use the sum of absolute differences (SAD) for the 
cost function in a predefined neighborhood size. The 
corresponding point in iI  for point p  is therefore estimated 
as: 
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where Pat()  defines a search pattern around a pixel and 
od()Neighborho  defines a neighborhood size. The optical 

flow of p  becomes ),()ˆ,ˆ( yxvu − . Computing (3) for each 
pixel can be computationally expensive. In [4], inter-image 
differencing is used to limit the number of pixels for which 
optical flow is computed to those pixels located near motion. 
This makes the algorithm efficiency dependent on the amount 
of motion in the image. Instead, we utilize the inherent 
redundancy in (3) and our vision processor board (Matrox 
Genesis) capabilities to compute (3) for every pixel in a 
constant time. Our method works as follows: We first compute 
a set of difference images between 1−iI  and iI , where iI  is 
shifted each time according to Pat() . Furthermore, we 
augment each pixel in the difference image with the value of 
this shift. Then we convolve each difference image with a 
kernel of all 1’s, whose size is fixed and is determined by the 

od()Neighborho  function. This results in the sum and hence 
the value of the cost function. Finally, we find the minimum of 
all the convolved difference images. The estimated optical 
flow for every pixel can now be retrieved from the augmented 
offsets in the resultant image. 

The kernel can be of any size. The larger it is, the less the 
noise there will be. But that also means less sensitivity. A good 
compromise is a size of 5x5 or 7x7. The pattern can be of any 
shape, although a circular pattern would make the most sense. 
However, we use a sparse pattern of vertical and diagonal lines 

for efficiency reasons as in [4]. In our monitoring application, 
the cameras used are usually rather far away from the scene 
and motion does not exceed 2 to 3 pixels per frame. Therefore, 
a typical pattern is defined as follows: 

1  1  1 
 1 1 1  
1 1 1 1 1 
 1 1 1  
1  1  1 

To minimize the effect of noise, we use a threshold σK  as 
before on the cost function (normalized by the kernel size). 
Costs smaller than the threshold are therefore interpreted as 
noise rather than motion. 

This method gave very good results. The kernel that was 
used for the summation is 7x7. On 320x240 images with a 
pattern of 3±  pixels (one pixel larger than the one shown 
above), the processing rate is approximately 4 fps. On 
160x120 images, it is 10 fps. A pattern of 2±  pixels resulted 
in a rate of 15 fps on 160x120 images. 

C. Segmentation 
The segmentation phase aims at extracting contiguous 

groups of pixels, or blobs, that have similar properties. In the 
case of the foreground obtained from background subtraction, 
this can be achieved using any connected component 
extraction algorithm (e.g., border following). In the case of 
optical flow, we use the floodfill algorithm and take the 
direction of the flow into consideration while performing 
segmentation. The basic idea is to cluster together contiguous 
pixels whose optical flow direction differs by an amount below 
a threshold. At the end of this stage, we will have computed 
blobs and their attributes. The computed attributes are the 
number of pixels (size), the center of mass, the mean velocity, 
the mean direction, and the bounding rectangle. The latter is 
computed by computing the eigenvectors of the covariance 
matrix that describes the distribution of the pixels in the blob. 
The length and width of the rectangle are set to a multiple of 
the square roots of the eigenvalues. We found that a factor of 
1.5 works best in describing these rectangles. 

III. TRACKING 
Tracking is an essential component of the system. A 

diagram of the system is shown in Fig. 2. As explained above, 
optical flow is estimated by the correlation method and the 
background is used to find motionless foreground objects. The 
fusion of both is then segmented into blob entities.   

Blobs are used for the layers model. They serve as 
measurements for higher level entities (called regions). A 
confidence value is associated to each of the possible links 
(called relationship) between two entities. This value depends 
on the overlap surface, the distance, and speed similarity 
between the two entities. 



 

A. Layer model 
1) First level: blobs 

We model a blob using its position, size, bounding rectangle 
area, and velocity. These parameters are computed during the 
floodfill algorithm. 

2) Second level: regions 
The intrinsic parameters are the same as those for blobs. 

The differences are in the way they are computed. The regions 
inherit values from their parent blobs at creation time but they 
are adapted during tracking. Other properties, like the time of 
existence or inactivity, are also used for regions. 

B. Details of relationships 
Blob-blob relationships are one-to-one and relate blobs in 

one frame to blobs in the next frame. Blob-region relationships 
are many-to-one. All relationships are decided based on the 
confidence values ),( βα  which reflect the similarity between 
two entities A  and B . We introduce thresholds to define the 
presence or absence of a relationship between two entities. In 
our tracker, α  is associated with the position and the area of 
the entities while β  is related to the similarity in motion 
direction. 

To compute α , we first define Overlap()  between two 
rectangles as the ratio of the area of their intersection to the 
maximum area of the two rectangles. The intersection of the 
two rectangles is computed by polygon clipping. We set 
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where )Distance(,  is computed with a fuzzy model using the 
distance between the two centroids and the perimeter of each 
rectangle:  
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In the case of blob-blob relationships, the above coefficients 
are set to (5,5) instead of (7,3). This is explained by the fact 
that a relationship between a region and a blob is supposed to 
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Fig. 2.  Tracking system.  
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in the parent blob). These will be used to specify the size and 
orientation of the region’s rectangle as was done for blobs (see 
II.C). The state vector also contains a constant value 
describing the size of the region (in pixels). Therefore,  

[ ]syxyxyyxxX ><><><= ,22
��  (7) 

The measurement vector will have everything except the 
velocities. It is clear that the system can be split into smaller 
ones: one for coordinates and velocities, and one for each of 
the constant parameters. 

Measurement noise is related to the blob-region relationship 
confidence values. In particular, if we let 

1

5

1 −
+

=Σ βα
, (8) 

the measurement noise covariance for the system of 
coordinates and velocities is 
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and it is 2
�  for the systems of constant parameters. 

IV. EXPERIMENTAL RESULTS 
We tried our algorithms on several outdoor scenes from the 

Twin Cities area. One area where one may find crowds is 
around the Xcel Energy Center in St Paul. We filmed scenes 
during day and night. The processing rate of our program 
depends on the desired accuracy of the optical flow approach. 
In the general case, a pattern with a radius of one pixel is 
enough to detect objects on images with a size of 160x120 
pixels. All the results are obtained with a 5x5 Kernel, which 
allows for very good detection without significant corruption 
by noise. With these parameters, our tracker runs at 15 fps 
(this includes output display). If we use a pattern of radius 2, 
the frame rate drops to 10 fps. One thing worth mentioning is 
that in case some frames have to be dropped, it is important to 
drop the same number of frames consistently, e.g., one frame 
processed followed by two dropped and so on. Otherwise we 
get temporal instability. The reason is that optical flow 
estimation assumes that the time interval between two frames 
is always the same. For this reason, our tracker runs at speeds 
of either 15 fps or 10 fps, or )1/(30 +n  fps ( n  being the 
number of skipped frames). 

A. Statistics 
The first result we present shows statistics gathered over a 

time period of two minutes. These statistics were computed 
from optical flow, blobs, and regions. The values are shown in 
Table 1. The statistics were computed by accumulating the 
flow, region, and blob directions. In the case of optical flow, 
the table shows the percentage of pixels moving in different 
directions (the values in parenthesis show the percentage out 
of moving pixels only). In the case of blobs (and regions), the 
percentages are also of pixels but the directions are those of 
blobs (and regions) containing the pixels. The frame rate was 
10 fps. Notice that blobs were not able to sufficiently capture 

the motion in the direction of 135 degrees. This is due to the 
fact that the blobs direction may be inaccurately initialized 
when the underlying motion of pixels is not consistent. This 
also stresses the need for the regions level, which was able to 
capture that direction based on blob information even though 
the information is not accurate. Notice also that the most 
frequent region direction is 0 whereas the most frequent pixel 
direction is –45. This is merely a quantization issue since pixel 
directions are quantized while region directions are not. 

The density represents the ratio of the number of pixels in a 
blob (or region) to the area of the bounding rectangle of the 
blob (or region). This value exceeds one because of 
inaccuracies of modeling the blob (or region) as a rectangle. 
However, it is a useful indicator to identify a crowd; a region 
representing a crowd would have a high density (above 0.75). 
Other parameters that can be used to identify a crowd are the 
area (sufficiently large) and the speed (sufficiently small). 

B. Most used area 
Fig. 3(b) is a representation of most used areas in the scene 

which is a direct result computed by accumulating optical flow 
values over a period of 2 minutes. 

C. Tracking results 
Fig. (3) shows some of the tracking results. The results are 

presented as snapshots every two seconds. Rectangles 
represent regions. Regions with a cross represent detected 
crowds. The numbers shown are the region identifiers. Fig. 
3(a) shows the adaptively estimated background. Fig. 3(c-e) 
are from a day-time sequence and Fig. 3(f-h) are from a night 
sequence. 

V. CONCLUSIONS 
This paper presents a vision-based system for monitoring 

crowded urban scenes. Our approach combines an effective 
detection scheme based on optical flow and background 
removal that can locate vehicles, individual pedestrians, and 
crowds. The detection phase is followed by the tracking phase 
that tracks all the detected entities. Traffic objects are not 
simply tracked but also a wealth of information is gathered 
about them (position, velocity, acceleration/deceleration, 
bounding rectangle, and shape features). Potential applications 
of our methods include intersection control, traffic data 
collection, and even crowd control after athletic events. 
Experimental results in different lighting conditions are 
presented. Future work will be focused on methods to deal 
with shadows and occlusions. 
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Fig. 3. Tracking results. 
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